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An Inequality for Convex Functions Involving
G-Majorization

by

by Ramén V. Le6n and Frank Proschan
The Florida State University

ABSTRACT

In this paper we derive a simple inequality involving expectations of
convex functions and the notion of G-majorization. The result extends a
similar inequality of Marshall and Proschan (1965), J. Math. Anal. Applic.

Useful applications of the more general inequality are presented.
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An Inequality for gonvex lfmctions Involving
G-Majorization

Ramén V. Leén and Frank Proschan
The Florida State University

In this note we derive a simple inequality involving expectations of
convex functions and the notion of G-majorization. The result extends a
similar inequality of Marshall and Proschan (1965) involving majorization.
A number of useful applications of the more general inequality are then
presented.

Let G be a group of matrices (linear transformations) acting on R™.

A vector a = (al,. S .,an) is said to G-majorize a vector b = Cbl,.. .,bn),

written g ¢ b, if b is in the convex hull of the G-orbit of a. If G = P
the group of permutation matrices, G-majorization coincides with majori-
zation (see Eaton and Perlman, 1976). A random vector X = (Xl, ,Xn) is
said to be G-invariant if X is stochastically equal to gX for all gef. When

G=P

n? We say that Xl, " ..,)(n are exchangeable random variables. For vectors

gand b, let ab %f (ab,,....ab).

Theorem 1. Let G be a finite group such that for all geG there exist h
and keG for which h(ga'b) = a'kb for all vectors g and b. Let X be a G-invariant

random vector, ¢ a continuous, convex, G-invariant function and a § b. Then
(1) E¢(2'X) 2 E¢(B-X).
Moreover, if ¢ is strictly convex, equality holds only when a = gb for some

geG, or when the Xi are all zero with probability one.

m
Proof. Let G = {gi}'!l Then we may write b -'): a.g.a, where each

j=1" 35"
7 Eo(r .1 X
aj 2 0 and jzl a; = 1. Tt follows that Es('X) = E6((;f; ;8,21
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E¢( .. a.[g.a'X 4 .Eo(g.a-X). j 2 »
’(5-1 a;0g;2°X1) < 321 a;Ee(g;a X). For each j, let hy and k j be the elements

of G for which hy (gjg-l(,) = a'kX. Then E¢(gjg‘1() = Eo(h; (gjg'y) [by the G-

invariance of ¢ = E¢(g'kj§) = E¢(a-X) by the G-invariance of X1. Thus
m

BRY < 1 oEe@d) = BoeD.
J-

In case ¢ is strictly convex, it is clear from the above proof that
equality holds only if for some geG, b'X = ga‘X with probability one. 0

Remark 1. If G = P, then for all geG and vectors g and b, g'l(gg-b)
= g’g'lp. Therefore in this special case the hypothesis of Theorem 1 is
satisfied. It follows that the main result of Marshall and Proschan (1965)
involving majorization is a special case of Theorem 1.

Remark 2. Other groups of interest for which the hypothesis of the
theorem is satisfied are: (a) The group G1 of sign changes and (b) the
group G2 of permutations and sign changes, as is readily verified.

Remark 3. Note that in Gz,g'l(gg-lg) z g-g'lh for all geG,. For example ¢

if ¢ = E; ';1,] then Eg ",1,:[“_; ';Jg-h] = g-[B (l)p,] So in G, the milder re- g

quirement is needed that for all geG there exist h and keG for which h(ga‘b)

= a-kb. Also note that this condition is not satisfied for some groups. For |

. 0 -1 .
exarple, if G = r‘l’ 01,1 and g = Eg (1, » then clearly there do not exist
h and k for which h(ga'h) = a-kb.
Remark 4. Let G = G, and let vectors g and b have all components non-

G
negative. Then a < b if and only if a is weakly majorized by b. (See Marshall,
Walkup and Wets (1967) for the definition of weak majorization.)

Similarly, let G = G;, and let vectors g and b have all components
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nonnegative. Then g (53 b if and only ifa; < b, for i = 1,2,...,n. It follows
that Theorem 1 yields results concerning weak majorization and the usual par-
tial ordering of the plane. (See also Remark 8.)

Remark 5. For comments on a converse to Theorem 1, see Remark 3 of
Marshall and Proschan (1965). Also see Remark 4 of that paper for a counter-
example showing that the conclusion of Theorem 1 need not necessarily hold

e e g

when we weaken the hypothesis to require ¢ to be only continuous and isotone
with respect to the G-majorization ordering, i.e., G-monotone. (A G-invariant
convex function is necessarily G-monotone). However, by using a path lemma of
Eaton and Perlman (1976), it is possible to show that if G is a reflection

group, then Theorem 1 holds when ¢ is merely continuous and convex along all

e ko
»

the line segments joining a with ga for all geG. (See Eaton and Perlman (1976)

T

for the definition of a reflection group.) This is consistent with Remark 4
of Marshall and Proschan (1965). Thus if G = G2 we need only require that ¢,
considered as a function of a specified pair of coordinates with all other co-
ordinates held fixed, be convex. Note that this condition on ¢ is the same as |
that in Remark 4 of Marshall and Proschan (1965). Similarly, if G = G1 , We
need only require that ¢, considered as a function of a specified coordinate
with all other coordinates held fixed, be convex.

Corollary 1. Let G = GZ' Let X(ol), 5o .,X(an) be independent random

variables, where X(ai) is nommally distributed with mean zero and standard

% deviation - Let ¢ be continuous, convex, and G-invariant, and (°1’“"°n)

G
2 (oi‘.---,an‘)- Then

(2) EO(X(Ol),...,X(On)) 2 E¢(x(°i‘)’-'-’x(°'n‘))-

Proof. Let Yl,. . .,Yn be independently distributed standard normal random
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variables. Then E¢(c1Y1, s .,cnYn) 2 EQ[ol‘Yl, o .,cn‘Yn) by Theorem 1.

Since oY and x("i) have the same distribution, the result follows. [

Remark 6. Similar results are true when G is Pn or Gl'

Remark 7. Note that the only property of X(ai) used in the proof of

Corollary 1 is that X(ai) and °iY have the same distribution where Y is a
random variable distributed symmetrically about zero. Thus, for example,

Corollary 1 is still true when x(°i) is uniformly distributed on the interval
(-oi,oi). For simplicity, Corollary 1 is stated for the special case X(oi)
is nommal.

P G &
Remark 8. Note that since g < b or a < b implies g < b, (2) holds when

a snl), or a < b. (A similar remark applies whenever the G, ordering holds.)
Corollary 2. Let ¢ be continuous, convex, and invariant under permu-

Gz
tations and sign changes, and let a3 > b. Then

(3) I+ $@Xg,.. 08X ) 2 T* $(byXq» -+ b x) where J* denotes summation
over all sign changes and permutations of the X

Proof. (3) is an immediate consequence of (1), where P{ (xl,...,xn) =

o [0}
1 n 1 : 5 . .
(-1) Xil,---,('l) xin)} = o where (ij,...,i ) is a permutation of

(1,2,...,n) and 0= 0 or 1 for i=l1,...,n.

Remark 9. Corollary 2 is a variation of Muirhead's Theorem. (See Hardy,
Littlewood, and P6lya, 1952, pp. 44-48.)

Remark 10. For other nossible annlications yielding inequalities, see
Marshall and Proschan (1965).
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